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Abstract— Traditional IK methods for redundant humanoid
manipulators emphasize end-effector (EE) tracking, frequently
producing configurations that are valid mechanically but not
human-like. We present Human-Like Inverse Kinematics (HL-
IK), a lightweight IK framework that preserves EE tracking
while shaping whole-arm configurations to appear human-
like—without full-body sensing at runtime. The key idea is a
learned elbow prior: using large-scale human motion data retar-
geted to the robot, we train a FiLM-modulated spatio-temporal
attention network (FiSTA) to predict the next-step elbow pose
from the EE target and a short history of EE–elbow states.
This prediction is incorporated as a small residual alongside
EE and smoothness terms in a standard Levenberg–Marquardt
optimizer, making HL-IK a drop-in addition to numerical
IK stacks. Over 183k simulation steps, HL-IK reduces arm-
similarity position and direction error by 30.6% and 35.4%
on average, and by 42.2% and 47.4% on the most challenging
trajectories. Hardware teleoperation on a robot distinct from
simulation further confirms the gains in anthropomorphism.
HL-IK is simple to integrate, adaptable across platforms via
our pipeline, and adds minimal computation, enabling human-
like motions for humanoid robots.

I. INTRODUCTION

A robotic arm can be defined as a series of links connected
together by joints [1]. Inverse kinematics (IK) is a funda-
mental problem in such robotics, traditionally formulated
to compute joint configurations that achieve a specified
end-effector (EE) pose. For industrial manipulators, this
formulation is often sufficient, since the primary objective
is to place the tool center point at the desired location
with high precision. Classical IK solvers—whether based
on closed-form derivations [2]–[5], numerical iterations [6],
[7], or optimization frameworks [8]–[10] — focus almost
exclusively on EE tracking.

For redundant robotic arms, the inverse solution to a
given EE pose is often not unique, with infinitely many
possible configurations [11], [12]. When only the EE pose is
constrained, the intermediate joints remain underdetermined
[13], which can lead to solutions that are mechanically valid
but visually unnatural and non-human-like. In scenarios such
as humanoid robot teleoperation [14]–[16], beyond accurate
EE tracking, we also aim for the robot’s overall arm config-
uration to closely resemble that of the human arm, thereby
achieving a higher level of anthropomorphism. Existing
methods [17], [18] often rely on external cameras to capture
human body keypoints and align them with robot joints to
improve configuration similarity. Yet, such approaches not
only require additional perception inputs but also typically
do not treat EE tracking as the primary constraint, and thus
cannot be regarded as strict IK solutions. Therefore, our goal

Fig. 1. In physical teleoperation, when only the EE pose is used as
input, our HL-IK method achieves a more human-like effect, with the arm
configuration more closely resembling that of humans.

is to develop a system that, given only the desired EE pose
as input (as in traditional IK), not only ensures precise EE
tracking but also achieves close similarity between the human
and robot arm configurations.

To realize this goal, we first model the human arm as
a four-point, three-segment kinematic chain comprising the
shoulder, elbow, wrist, and fingertips (the human EE) [19].
For a fixed EE pose, the dominant redundancy manifests as
the elbow “swivel” about the shoulder–wrist axis. Aligning
the elbow pose effectively sets the arm plane and the forearm
pointing direction, thereby resolving the main ambiguity and
yielding anthropomorphic configurations without sacrificing
EE accuracy. In other words, once the elbow is aligned, the
overall arm configuration becomes perceptually natural and
significantly more similar to that of a human. Furthermore,
given a desired EE pose, determining a prior elbow pose that
best reflects the natural human form becomes a central aspect
of our approach. In summary, the primary contributions of
this paper are:

1) Human-like data acquisition framework: We propose an
automatic EE–elbow data collection scheme based on large-
scale human motion trajectory datasets, which can be readily
adapted to different robots.

2) Elbow prediction network: We design a FiLM-
modulated Spatio-Temporal Attention Network (FiSTA) that
uses only a partial history of EE and elbow frames to predict
the desired human-like elbow pose for a given EE target.

3) Comprehensive validation: The effectiveness of our ap-
proach is validated both in simulation and on real hardware,
as well as across different robotic configurations.



Fig. 2. Our method begins with a large-scale human motion dataset, which we retarget to the robot to extract an EE–elbow mapping dataset used to train
our FiSTA network. After training, during human teleoperation we obtain the operator’s desired current EE pose via a VR headset. Given this target and
a fixed-length history of past frames, FiSTA predicts the elbow position. We then augment the IK objective with an elbow-alignment cost and solve for
the desired joint angles using Levenberg–Marquardt iterations. The resulting commands are sent to the robot’s low-level controller, yielding human-like
motion.

II. RELATED WORK

A. Inverse Kinematics

The goal of IK is to compute joint configurations that
realize a specified EE pose. Classical approaches pursue
analytical (closed-form) solutions [2]–[4], which are highly
efficient but hinge on restrictive assumptions about the ma-
nipulator’s kinematic structure. More recently, the field has
shifted toward iterative optimization formulations [8]–[10],
[19] that trade closed-form speed for modeling flexibility
and can accommodate secondary objectives arising from
kinematic redundancy, including geometric constraints [10],
[20] and learned collision penalties [21]. Building on this
line of work, our proposed HL-IK explicitly incorporates
humanoid-likeness into the IK objective. While ensuring pre-
cise EE tracking, HL-IK further guide the arm configuration
to resemble natural human arm postures, thereby achieving
more anthropomorphic motion behavior.

B. Motion Retargeting

Motion retargeting refers to mapping motions from a
source entity to a target entity [22], such as transferring
human movements to robots. It plays a crucial role in robotic
teleoperation systems [23] and in learning frameworks based

on human demonstrations [17], [24], [25]. Existing real-
time whole-body teleoperation methods based on motion
retargeting rely on sensing devices to capture the full-body
state, which in turn requires additional perception algorithms.
In contrast, HL-IK pretrains on large-scale retargeting data
to learn an elbow-configuration prior, enabling human-like
upper-limb motion from EE-only input.

C. Human-Like Motion Planning in IK

To encourage human-like arm configurations in IK, prior
work largely takes two paths. Classical methods impose
kinematic heuristics—e.g., swivel-angle parameterizations
[26], [27] and physiology-inspired criteria [28]—but such
hand-tuned rules generalize poorly across subjects and tasks.
Recent data-driven method [29] learn wrist-pose→arm-angle
mappings and then hard-wire them into closed-form IK;
because this prior are entangled with analytic solvers, they
transfer poorly to iterative numerical methods and restrict
design flexibility. We instead learn an optimizer-agnostic
elbow prior from large-scale human trajectories and encode
it as a lightweight cost. Decoupled from any specific solver,
this prior drops in as a generic objective term, integrating
seamlessly with starndad numerical optimizers.



Fig. 3. EE-Elbow Data Collection. For each frame, extract the relative
pose of the EE and the elbow in the corresponding shoulder frames.

III. METHODOLOGY

To realize HL-IK, we first retarget large-scale human mo-
tion datasets onto the robot to collect and process paired EE-
elbow trajectories. We then introduce our FiLM-modulated
Spatio-Temporal Attention (FiSTA) network, which learns
from these data to predict the elbow pose given a short
motion history and the current desired EE target. Finally,
we show how the predicted elbow is incorporated into a
numerical optimization IK. The full pipeline of our approach
is illustrated in Fig. 2.

A. EE-Elbow Data Collection

We use AMASS [30] as the source of human motion
trajectories, which provides consistent SMPL sequences with
smooth kinematics and reliable pose quality. We retain six
upper-limb joints—left/right shoulder, elbow, and EE—to
represent the two arms. Following [17], we first estimate
an upper-body shape parameter β′ for the target robot via
gradient-based fitting. Using β′, we retarget each AMASS
frame to the robot and build a frame-aligned dataset Dβ′

paired with the original AMASS sequence Dβ .
We adopt the convention that ATB ∈ SE(3) maps

coordinates from frame {B} to frame {A}. All poses in Dβ′

are expressed in the world frame {W}. From the retargeted
sequence, forward kinematics (using the robot URDF) yields
the world transforms of the shoulder, elbow, and hand (EE)
for each arm: WTSj

, WTEj
, WTHj

with j ∈ {left, right}.
The quantities we extract are the elbow and EE poses in the
corresponding shoulder frames:

SjTEj
=
(
WTSj

)−1 WTEj
, (1a)

SjTHj
=
(
WTSj

)−1 WTHj
. (1b)

These four SE(3) poses per frame—SlTEl
, SlTHl

,
SrTEr ,

SrTHr—constitute the supervision we use for learn-
ing and downstream IK. Fig. 3 illustrates this data collection
process.

B. FiLM-modulated Spatio-Temporal Attention Network for
Elbow Prediction

Inputs and outputs. For a single arm, the history window
contains T frames. Each frame encodes the 7D pose (3D
position + 4D unit quaternion) of the EE and the elbow in
the shoulder-local frame, giving 7×2×T = 14T dimensions
in total. The future conditioning input is the next-step EE
target pose (7D). The network predicts a 7D elbow pose for
the next step.

Fig. 4. Model Architecture. A GRU encodes the full history to produce
temporal features, which are FiLM-conditioned using the next EE target. In
parallel, an attention module computes spatial features from the last frame.
The two streams are then concatenated to predict the elbow configuration.

FiSTA architecture. Fig. 4 illustrates the network archi-
tecture of FiSTA and the model comprises four cooperating
modules:

1) Temporal Encoder: A GRU consumes the 5-frame
history and produces a temporal summary that captures
position, velocity changes, and inertial trends.

2) Spatial Attention Module: On the most recent frame,
the EE pose and elbow pose are treated as two tokens; a
lightweight self-attention layer models their instantaneous
dependence to yield a spatial summary.

3) Goal Modulator: The next-step EE target is mapped
to FiLM-style feature-wise scale and shift, which affine-
modulate the temporal summary and thus condition historical
dynamics on the imminent goal.

4) Fusion and Output Head: The modulated temporal
features are concatenated with the spatial summary and
passed through an MLP regressor to produce the 7D elbow
prediction.

Design rationale. This design explicitly decouples tempo-
ral dynamics from instantaneous spatial coordination while
enabling goal-conditioned modulation. Compared with naive
target concatenation, FiLM modulation provides more ex-
pressive conditioning, and the lightweight spatial attention
captures crucial EE–elbow coordination with negligible com-
putational overhead.

C. Elbow Aligned Inverse Kinematics

Kinematic optimization benefits from quasi-Newton ap-
proaches, which accelerate convergence by exploiting cur-
vature information of the cost function [31]. In our IK
computation, we employ the Levenberg–Marquardt (LM)
optimizer [32]–[36], which minimizes the sum of squared
residuals defined below.

1) EE Pose Cost: This EE pose cost cee allows the IK to
track the given EE target as closely as possible.

cee(q) = W1/2
ee log

((
Ttaree

base

)−1
Tee

base(q)
)
∈ R6, (2)

2) Elbow Pose Cost: This elbow pose cost celbow enables
the IK to track the given EE elbow to a certain extent.

celbow(q) = W
1/2
elbow log

((
Ttarel

base

)−1
Tel

base(q)
)
∈ R6 (3)



3) Smoothness Cost: The smoothness cost csmooth en-
courages small changes in joint positions, and is useful for
generating smooth trajectories.

csmooth(q) = W
1/2
smooth

(
qt − qt−1

)
∈ Rd (4)

where
• Ttaree

base ∈ SE(3) is the target EE pose expressed in the
base frame,

• Tee
base(q) ∈ SE(3) is the forward-kinematics EE pose

at configuration q,
• Ttarel

base ∈ SE(3) is the target elbow pose in the base
frame,

• Tel
base(q) ∈ SE(3) is the elbow pose from forward

kinematics,
• log(·) : SE(3) → R6 is the matrix logarithm map-

ping rigid-body transformations to 6D twist coordinates
(translation + rotation error),

• W
1/2
(·) denotes the square-root of the weight matrix used

for residual scaling,
• qt ∈ Rd is the robot joint configuration at time step t

and the total number of joints is d.
Then, the three types of residuals are stacked into a single

residual vector c(q), and its Jacobian J(q) with respect to the
joint configuration q is computed. The Levenberg–Marquardt
iteration then updates the joint configuration by solving a
damped least-squares problem, which balances fast conver-
gence with robustness against ill-conditioning:

c(q) =

 cee(q)
celbow(q)
csmooth(q)

 , (5a)

J(q) =
∂c(q)

∂q
, (5b)

qn = qn−1 −
(
J⊤J+ λI

)−1
J⊤c(qn−1). (5c)

Through successive iterations, the joint configuration qn

converges to a solution q∗ that minimizes the stacked costs,
yielding an IK solution with accurate EE tracking, improved
elbow alignment, and smooth joint motions.

IV. EXPERIMENTS

A. Model Evaluation

To comprehensively assess the elbow–prediction network,
we conduct systematic experiments along three axes: (i) Net-
work Comparisons; (ii) Tests on history length and ablation
experiments on the FiSTA network; (iii) Runtime tests. To
ensure broad coverage—from everyday activities to dynamic,
in the AMASS dataset, we specifically employ the following
three items:

a. ACCAD Dataset, 252 trajectories [37]
b. CMU Dataset, 2079 trajectories [38]
c. SFU Dataset, 44 trajectories [39]

To balance efficiency and reliability, we adopt a two-stage
training strategy: (1) All network comparison experiments,
ablation studies, and hyperparameter searches are conducted
on the ACCAD Dataset. (2) We then perform final training

Fig. 5. Model Evaluation Comparison. The y-axis shows validation MSE
over epochs. The red star marks the lowest loss of FiSTA. All models use a
5-frame history, with other hyperparameters set to their best configuration.

Fig. 6. Ablation and sequence length comparison of FiSTA. Validation loss
with different history lengths (1, 5, 8, 12, 16 frames) and ablation variants
(without spatial, FiLM, or temporal).

on the full dataset using the selected configuration. During
comparison, we split the dataset by trajectory, with 90% for
training and 10% for validation.

1) Network Comparisons: We evaluated five represen-
tative architectures—MLP, LSTM, GRU, Transformer, and
FiSTA—using the ACCAD subset, where each was trained
with tuned hyperparameters under identical normalization
and loss settings. The history length was fixed at 5 for all
models. Validation errors are reported in Fig. 5. Among
the candidates, FiSTA achieved the lowest validation error
(MSE=0.001760), substantially outperforming all base-
lines. By contrast, the explicit architectural separation of
spatial and temporal processing in FiSTA provides a stronger
inductive bias than standard recurrent models or Trans-
formers, which must learn these relationships from a less
structured hidden state.

2) Tests on history length and ablation experiments on the
FiSTA network: To rigorously evaluate our proposed model,
we conducted a series of tests to analyze the impact of
history sequence length and core architectural components
on the final validation loss. First, we assessed the model’s
performance with varying lengths of historical context, test-
ing sequence lengths of 1, 5, 8, 12, and 16 frames. As shown
in Fig. 6, the results clearly indicate an optimal contextual
window. The model with a sequence length of 5 achieved the
lowest validation loss, demonstrating maximum predictive



Fig. 7. Keypoints and segments for metric computation. Display the four
key points (Shoulder, Elbow, Wrist, EE) and three line segments (Upper-
arm, Forearm, EE line) used for quantitative indicators of anthropomor-
phism.

precision. We observed that L = 5 strikes a favorable bal-
ance: too short a context fails to provide sufficient dynamic
information for inferring motion trends, while an excessively
long context introduces irrelevant historical data, reducing
the signal-to-noise ratio. To quantify the contribution of
each component, we performed an ablation study on FiSTA
(seq=5) (all deltas relative to the full model). Removing
the Spatial Attention and Temporal modules increased the
loss by 4.9% and 2.8%, respectively, indicating that both are
important for building a robust spatiotemporal representation.
The largest effect came from ablating the Goal Modulation
module, which led to a 6.6% drop in accuracy. This module,
implemented as a FiLM layer, conditions the GRU-encoded
temporal features on the EE target. Its removal therefore
highlights the critical role of FiLM-based goal conditioning
in injecting target information into the temporal feature
stream for this task.

3) Runtime Comparison: To assess the deployment poten-
tial of our model in practical applications, we conducted a
comprehensive runtime tests on an NVIDIA RTX 4070 GPU.
The total runtime for each model was calculated by averaging
the runtime for one arm across the ACCAD trajectories.
In this comparison, the total time is divided into two main
stages as shown in Table I: (i) Preprocess, which includes
the neural network’s input/output handling and the model
inference itself. (ii) IK, which represents the time taken
by the subsequent IK solver. Our optimal model, FiSTA
(seq=5), achieved the best performance, though its overall
running time ranked fourth among all the models. The final
computation took 7.0840 (ms), which is well within the
acceptable range.

4) Conclusion: We set the default history length for
FiSTA to L = 5. The network was then trained on the entire
dataset for a total of 1 hour and 50 minutes on an NVIDIA
RTX 4090 GPU.

B. Comparative Analysis of Elbow Alignment

When incorporating elbow alignment into IK, we set the
weight coefficients as follows.

Wee = diag(50 I3, 40 I3), (6a)
Welbow = diag(20 I3, 5 I3), (6b)
Wsmooth = 0.35 Id. (6c)

In Wee and Welbow, the first 3×3 block weights transla-
tional residuals and the second weights rotational residuals;
Id denotes the d×d identity where d is the joints number.

For quantitative evaluation, we use a new human-motion
dataset (not for network training) - BMLhandball (649 tra-
jectories, 183,806 steps) [40]. The trajectory generated by
the original retargeting method serves as the reference, and
we compare two IK solvers: (i) a baseline using only the
EE pose as input (ii) our elbow-aligned method HL-IK. We
conduct a comprehensive evaluation using four metrics: two
that quantify arm-configuration similarity and two that EE
tracking precision.

1) Arm’s Key Point Position Error: Measures the ab-
solute positional deviation of key arm points Karm =
{elbow, wrist, EE} from the reference trajectory. This is
mainly for calculating the error of key points on the arm
configuration after IK solving. Fig. 7 (a) demonstrated these
arm’s key points.

Ep
arm(t) =

∑
k∈Karm

∥∥pre
k (t)− pik

k (t)
∥∥2 , (7)

where pre
k (t) and pik

k (t) represent the 3D positions of the key
points from the reference trajectory and the IK solution at
time t, respectively.

2) Arm’ Line Angle Error: Quantifies the angular devi-
ation of Larm = {upper arm line (shoulder-elbow), forearm
line (elbow-wrist), EE line (wrist-EE) }. This is mainly for
calculating the error of the direction of line segments on the
arm configuration after IK solving. Fig. 7 (b) demonstrated
these arm’s line.

Eθ
arm(t) =

∑
l∈Larm

arccos

(
υre
l (t) · υik

l (t)

∥vre
l (t)∥

∥∥vik
l (t)

∥∥+ α

)
, (8)

where υre
l (t) and υik

l (t) denote the arm-segment vectors
of the reference trajectory and the IK solution at time t,
respectively. α > 0 is a small numerical constant added for
stability to avoid division by zero.

3) EE Position Tracking Error: Evaluates the 3D posi-
tional tracking accuracy of the EE relative to the reference
trajectory.

Ep
ee(t) =

∥∥pre
ee(t)− pik

ee(t)
∥∥2 , (9)

where pre
ee(t) and pik

ee(t) represent EE position of the refer-
ence trajectory and the IK solution at time t, respectively.



TABLE I
THE AVERAGE RUNTIME AND THE MINIMUM LOSS COMPARISON OF DIFFERENT MODELS

Model Name Preprocess (ms) IK (ms) Total (ms) Loss (×10−3)
MLP 1.3104 ± 0.153 5.4896 ± 0.951 6.8000 ± 0.963 2.130
GRU 1.7565 ± 0.210 6.4981 ± 1.102 8.2547 ± 1.122 1.973
LSTM 1.5480 ± 0.185 4.3283 ± 0.824 5.8763 ± 0.842 2.197
Transformer 7.3642 ± 0.551 4.6888 ± 0.915 12.0530 ± 1.068 1.994
FiSTA (seq=1) 2.8091 ± 0.303 4.8272 ± 1.040 7.6363 ± 1.173 1.825
FiSTA (seq=5) 2.8665 ± 0.325 4.2175 ± 0.562 7.0840 ± 0.772 1.760
FiSTA NoSpatial 2.0050 ± 0.126 3.9653 ± 0.679 5.9703 ± 0.698 1.846
FiSTA NoTemporal 1.9993 ± 0.107 5.7616 ± 0.626 7.7609 ± 0.637 1.809
FiSTA NoFiLM 2.1463 ± 0.072 9.0212 ± 3.291 11.1674 ± 3.303 1.876
FiSTA (seq=8) 3.0448 ± 0.339 4.2995 ± 0.745 7.3443 ± 0.954 1.923
FiSTA (seq=12) 3.1464 ± 0.380 5.4129 ± 1.188 8.5593 ± 1.405 1.902
FiSTA (seq=16) 3.1618 ± 0.368 4.2071 ± 0.658 7.3689 ± 0.878 1.926
Baseline IK (No NN) / 5.0818 ± 0.755 5.0818 ± 0.755 /

Fig. 8. The robot motions. Comparison of robot motions reconstructed by different methods: Ground Truth (green), HL-IK (red), and Baseline (blue).
In each visualization, four spheres on each arm represent the shoulder, elbow, wrist, and EE, respectively. The gray robot mesh is rendered from the
ground-truth poses, while the colored skeletons illustrate the predicted trajectories of different methods.

4) EE Orientation Tracking Error: Evaluates the 3D
orientational tracking accuracy of the EE relative to the
reference trajectory.

Eo
ee(t) = ϕ

(
Rre

ee(t) ·
(
Rik

ee(t)
)−1
)2

, (10a)

ϕ = acos

(
tr(R)− 1

2

)
(10b)

where Rre
ee(t) and Rik

ee(t) represent the rotation matrices of
the EE from the reference trajectory and the IK solution
at time t, respectively. ϕ quantifies the rotational difference
as a specific scalar value representing the angle and tr(·)
calculates the trace of the matrix.

Based on the four metrics mentioned above, we conducted
a comparative analysis on the BMLhandball’s [40] human
retargeting dataset. First, we calculated the average error
across all steps in the trajectory. The first two columns in
Table. II reports the mean errors across all 183,806 steps.
Each indicator in the table shows the average error for all
steps. With elbow alignment, the arm’s key point position
error and the line angle error are reduced of 30.6% and
35.4%, while the EE tracking accuracy drops slightly—an

acceptable trade-off for teleoperation.
Since our aim is to probe configuration-tracking advantage

in our HL-IK, we rank-ordered trajectories by the “Arm’s
Key Point Position Error” achieved by the baseline method
and selected the top 20% as “challenging trajectories” for
further evaluation. We then compared the baseline with HL-
IK on this subset. As reported in the last two columns in
Table. II, and relative to the first two columns, the baseline
shows large increases in both arm’s key point position error
and line angel error, whereas HL-IK maintains nearly the
same error levels as on the full set. On this subset, HL-
IK reduces arm keypoint and direction errors by 42.2% and
47.4%, respectively. Fig. 8 visualizes this gap: the baseline
(blue) deviates substantially, while HL-IK (red) remains
closely aligned with the reference configuration.

C. Teleoperation Experiments on a Physical Robot

We tested a robot model in the physical world that is
completely different from the one used in simulation—a
wheeled-arm robot’s upper limb. We use the same weight
coefficients as those used in the simulation. We applied the
HL-IK method to the robot’s left arm and the original IK



TABLE II
COMPARISON OF MEAN METRICS ON THE FULL DATASET AND CHALLENGING DATESET

Quantitative Indicators HL-IK Baseline HL-IK (Challenging) Baseline (Challenging)

Key Point Position Error (m) 5.944× 10−2 ± 0.00412 8.571× 10−2 ± 0.00942 5.977× 10−2 ± 0.00436 10.338× 10−2 ± 0.00812
Line Angle Error (rad) 3.565× 10−1 ± 0.02438 5.515× 10−1 ± 0.08580 3.575× 10−1 ± 0.02190 6.791× 10−1 ± 0.06978
EE Position Error (m) 4.575× 10−3 ± 0.00067 1.847× 10−3 ± 0.00028 5.405× 10−3 ± 0.00218 3.642× 10−3 ± 0.00483
EE Orientation Error (rad) 8.110× 10−4 ± 0.00021 4.621× 10−4 ± 0.00008 10.728× 10−4 ± 0.00331 9.495× 10−4 ± 0.00141

Fig. 9. Teleoperation on a physical robot. We deployed the HL-IK framework on the robot’s left arm (shown on the right side of each figure) and a
standard IK solver without elbow-joint optimization on the right arm (shown on the left side of each figure). With HL-IK, the robot not only tracked the
end effector but, without any direct sensing, also inferred and aligned with the human elbow position. As a result, its overall arm configuration closely
matched the human’s, whereas the baseline IK achieved only end effector tracking and failed to reproduce configuration level similarity. Specifically, the
higher the elbow joint height, the more apparent the difference.

method to the right arm, observing the differences in arm
configurations during the teleoperation task. We use a Meta
VR headset as the sensing input for the EE target, and
no other sensing is employed. As shown in Fig. 9, HL-IK
enabled the robot to track the end effector and, without direct
sensing, infer and align with the human elbow position. As a
result, the robot’s overall arm configuration closely matched
the human’s, whereas the baseline IK achieved only end
effector tracking and failed to reproduce configuration level
similarity. In particular, this difference becomes increasingly
apparent with higher elbow joint heights.

V. CONCLUSIONS

In this paper, we introduced HL-IK, a lightweight IK
framework that preserves EE tracking while producing
human-like arm configurations without full-body sensing.
The key idea is a learned elbow prior: a FiSTA network
predicts the next-step elbow pose from a short motion history
and the desired hand target, and this prediction is injected as
a small residual cost alongside EE tracking and smoothness
in a standard Levenberg–Marquardt IK stack. This design
integrates seamlessly with generic kinematics libraries, adds
negligible overhead (best trade-off at a 5-frame history), and
significantly improves anthropomorphism. On a 183k-step

test, HL-IK reduces arm key-point and directional errors by
30.6% and 35.4% on average across all steps—and by 42.2%
and 47.4% on the most challenging trajectories—while main-
taining acceptable EE accuracy. Teleoperation experiments
on a physical robot likewise clearly demonstrate the effec-
tiveness of our method in improving arm-configuration sim-
ilarity in IK. Looking ahead, we will explore richer upper-
limb priors, extend to whole-body control, enable online
adaptation and personalization, and unify collision and task
constraints within a single optimization framework to further
improve generalization and robustness in real deployments.
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